« Generative model » : différence entre les versions

De Wiki BackProp
Aller à la navigation Aller à la recherche
(Page créée avec « « A generative model describes how a dataset is generated, in terms of a probabilistic model. By sampling from this model, we are able to generate new data. » Extrait de Generative Deep Learning David Foster »)
 
Aucun résumé des modifications
 
(Une version intermédiaire par le même utilisateur non affichée)
Ligne 1 : Ligne 1 :
« A generative model describes how a dataset is generated, in terms of a probabilistic model. By sampling from this model, we are able to generate new data. »
« A generative model describes how a dataset is generated, in terms of a probabilistic model. By sampling from this model, we are able to generate new data. »


Extrait de
« A generative model must be probabilistic rather than deterministic. If our model is merely a fixed calculation, such as taking the average value of each pixel in the dataset, it is not generative because the model produces the same output every time. The model must include a stochastic (random) element that influences the individual samples generated by the model. »
Generative Deep Learning
 
David Foster
 
 
== Références ==
 
Generative Deep Learning - David Foster - O'Reilly - 2019

Version actuelle datée du 4 janvier 2023 à 09:13

« A generative model describes how a dataset is generated, in terms of a probabilistic model. By sampling from this model, we are able to generate new data. »

« A generative model must be probabilistic rather than deterministic. If our model is merely a fixed calculation, such as taking the average value of each pixel in the dataset, it is not generative because the model produces the same output every time. The model must include a stochastic (random) element that influences the individual samples generated by the model. »


Références

Generative Deep Learning - David Foster - O'Reilly - 2019