« PEFT » : différence entre les versions
Aller à la navigation
Aller à la recherche
(Page créée avec « Thus, we, as a com- munity of researchers and engineers, need efficient ways to train on downstream task data. Parameter-efficient fine-tuning, which we denote as PEFT, aims to resolve this problem by only training a small set of parameters which might be a subset of the existing model parameters or a set of newly added parameters. https://arxiv.org/pdf/2303.15647.pdf ») |
(Aucune différence)
|
Version actuelle datée du 27 juillet 2023 à 09:34
Thus, we, as a com- munity of researchers and engineers, need efficient ways to train on downstream task data.
Parameter-efficient fine-tuning, which we denote as PEFT, aims to resolve this problem by only training a small set of parameters which might be a subset of the existing model parameters or a set of newly added parameters.