« Prompt » : différence entre les versions
(Page créée avec « == Références == * [https://learn.microsoft.com/en-us/azure/cognitive-services/openai/concepts/prompt-engineering] Introduction to prompt engineering * [https://www.deeplearning.ai/short-courses/chatgpt-prompt-engineering-for-developers/] ChatGPT Prompt Engineering for Developers * [https://learn.microsoft.com/en-us/azure/cognitive-services/openai/concepts/advanced-prompt-engineering?pivots=programming-language-chat-completions] Prompt engineering techniques... ») |
Aucun résumé des modifications |
||
Ligne 1 : | Ligne 1 : | ||
Un prompt est une commande textuelle transmise afin d'exécuter une action. Cette commande s'adresse principalement aux LLM (Large Language Model) ou aux logiciels de génération d'images entraînées pour comprendre ces commandes. | |||
Prompt engineering is a relatively new discipline for developing and optimizing prompts to efficiently use language models (LMs) for a wide variety of applications and research topics. Prompt engineering skills help to better understand the capabilities and limitations of large language models (LLMs). Researchers use prompt engineering to improve the capacity of LLMs on a wide range of common and complex tasks such as question answering and arithmetic reasoning. Developers use prompt engineering to design robust and effective prompting techniques that interface with LLMs and other tools.[4] | |||
Version du 1 mai 2023 à 07:33
Un prompt est une commande textuelle transmise afin d'exécuter une action. Cette commande s'adresse principalement aux LLM (Large Language Model) ou aux logiciels de génération d'images entraînées pour comprendre ces commandes.
Prompt engineering is a relatively new discipline for developing and optimizing prompts to efficiently use language models (LMs) for a wide variety of applications and research topics. Prompt engineering skills help to better understand the capabilities and limitations of large language models (LLMs). Researchers use prompt engineering to improve the capacity of LLMs on a wide range of common and complex tasks such as question answering and arithmetic reasoning. Developers use prompt engineering to design robust and effective prompting techniques that interface with LLMs and other tools.[4]