Emergent Abilities of Large Language Models

De Wiki BackProp
Révision datée du 27 avril 2023 à 15:39 par Jboscher (discussion | contributions) (Page créée avec « On entend par "Emergent Abilities of Large Language Models" une capacité présente dans un LLM qui ne se retrouve pas dans un modèle similaire mais plus petit. Ce qui veut dire aussi qu'on ne peut pas prévoir (extrapoler) cette nouvelle capacité uniquement à partir de celles d'un modèle plus petit. [1] We consider an ability to be emergent if it is not present in smaller models but is present in larger models. Although scaling is mainly conducted in mode... »)
(diff) ← Version précédente | Voir la version actuelle (diff) | Version suivante → (diff)
Aller à la navigation Aller à la recherche

On entend par "Emergent Abilities of Large Language Models" une capacité présente dans un LLM qui ne se retrouve pas dans un modèle similaire mais plus petit. Ce qui veut dire aussi qu'on ne peut pas prévoir (extrapoler) cette nouvelle capacité uniquement à partir de celles d'un modèle plus petit.

[1] We consider an ability to be emergent if it is not present in smaller models but is present in larger models.


Although scaling is mainly conducted in model size (with similar architectures and pre-training tasks), these large-sized PLMs display different behaviors from smaller PLMs (e.g., 330M-parameter BERT and 1.5B- parameter GPT-2) and show surprising abilities (called emergent abilities) in solving a series of complex tasks.

For example, GPT-3 can solve few-shot tasks through in-context learning, whereas GPT-2 cannot do well.

Thus, the research community coins the term “large language models (LLM)”1 for these large-sized PLMs [32–35]. A remarkable application of LLMs is ChatGPT2 that adapts the LLMs from the GPT series for dialogue, which presents an amazing conversation ability with humans.

Références

  • [1] Emergent Abilities of Large Language Models